Sharp L → L Bounds on Spectral Projectors for Low Regularity Metrics

نویسنده

  • Hart F. Smith
چکیده

We establish L2 → Lq mapping bounds for unit-width spectral projectors associated to elliptic operators with Cs coefficients, in the case 1 ≤ s ≤ 2. Examples of Smith-Sogge [6] show that these bounds are best possible for q less than the critical index. We also show that L∞ bounds hold with the same exponent as in the case of smooth coefficients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp L Bounds on Spectral Clusters for Holder Metrics

We establish Lq bounds on eigenfunctions, and more generally on spectrally localized functions (spectral clusters), associated to a self-adjoint elliptic operator on a compact manifold, under the assumption that the coefficients of the operator are of regularity Cs, where 0 ≤ s ≤ 1. We also produce examples which show that these bounds are best possible for the case q =∞, and for 2 ≤ q ≤ qn.

متن کامل

Sharp Bounds on the PI Spectral Radius

In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.

متن کامل

Spectrality of Ordinary Differential Operators

We prove the long standing conjecture in the theory of two-point boundary value problems that completeness and Dunford’s spectrality imply Birkhoff regularity. In addition we establish the even order part of S.G.Krein’s conjecture that dissipative differential operators are Birkhoff-regular and give sharp estimate of the norms of spectral projectors in the odd case. Considerations are based on ...

متن کامل

Subcritical L Bounds on Spectral Clusters for Lipschitz Metrics

We establish asymptotic bounds on the Lp norms of spectrally localized functions in the case of two-dimensional Dirichlet forms with coefficients of Lipschitz regularity. These bounds are new for the range 6 < p < ∞. A key step in the proof is bounding the rate at which energy spreads for solutions to hyperbolic equations with Lipschitz coefficients.

متن کامل

ar X iv : 0 70 9 . 27 64 v 1 [ m at h . A P ] 1 8 Se p 20 07 SUBCRITICAL L p BOUNDS ON SPECTRAL CLUSTERS FOR LIPSCHITZ METRICS

We establish asymptotic bounds on the L norms of spectrally localized functions in the case of two-dimensional Dirichlet forms with coefficients of Lipschitz regularity. These bounds are new for the range 6 < p < ∞. A key step in the proof is bounding the rate at which energy spreads for solutions to hyperbolic equations with Lipschitz coefficients.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006